Difference between revisions of "Moduli spaces of pseudoholomorphic polygons"

From Polyfolds.org
Jump to: navigation, search
(Disk trees for a fixed Lagrangian)
(General moduli space of pseudoholomorphic polygons)
Line 99: Line 99:
  
 
Finally, the symplectic area function <math>\omega: \overline\mathcal{M}(x_0;x_1,\ldots,x_d) \to \R</math> in each case is given by '''TODO'''
 
Finally, the symplectic area function <math>\omega: \overline\mathcal{M}(x_0;x_1,\ldots,x_d) \to \R</math> in each case is given by '''TODO'''
 +
 +
 +
Fredholm index <math>\matcal{M}^k(\ldots) = \{ b\in \matcal{M}(\ldots) \,|\, IND ... = k\}</math>

Revision as of 21:54, 23 May 2017

To construct the moduli spaces from which the composition maps are defined we fix an auxiliary almost complex structure J:TM\to TM which is compatible with the symplectic structure in the sense that \omega (\cdot ,J\cdot ) defines a metric on M. (Unless otherwise specified, we will use this metric in all following constructions.) Then given Lagrangians L_{0},\ldots ,L_{d}\subset M and generators x_{0}\in {\text{Crit}}(L_{0},L_{d}),x_{1}\in {\text{Crit}}(L_{0},L_{1}),\ldots ,x_{d}\in {\text{Crit}}(L_{{d-1}},L_{d}) of their morphism spaces, we need to specify the moduli space \overline {\mathcal  {M}}(x_{0};x_{1},\ldots ,x_{d}). We will do this below by combining two special cases.

Disk trees for a fixed Lagrangian

If the Lagrangians are all the same, L_{0}=L_{1}=\ldots =L_{d}=:L, then our construction is based on pseudoholomorphic disks

u:D\to M,\qquad u(\partial D)\subset L,\qquad \overline \partial _{J}u=0.

For a sequence of such maps (modulo reparametrization by automorphisms of the disk), energy concentration at a boundary point is usually captured in terms of a disk bubble attached via a boundary node. This yields to a compactification of the moduli space of pseudoholomorphic disks modulo reparametrization that is given by adding boundary strata consisting of fiber products of moduli spaces of disks. One could - as in the approach by Fukaya et al - regularize such a space and then interpret disk bubbling as contribution to \widehat \mu \circ \widehat \mu - where the composition is via a push-pull construction on some space of chains, currents, or differential forms on the Lagrangian. However, such push-pull constructions require transversality of the chains to the evaluation maps from the regularized moduli spaces, so that a rigorous construction of the A_{\infty }-structure in this setting requires a complicated infinite iteration.

We will resolve this issue as in JL by following another earlier proposal by Fukaya-Oh to allow disks to flow apart along a Morse trajectory. Here we work throughout with the Morse function f:L\to \mathbb{R} chosen in the setup of the morphism space {\text{Hom}}(L,L)=\textstyle \sum _{{x\in {\text{Crit}}(f)}}\Lambda x. We also choose a metric on L so that the gradient vector field \nabla f satisfies the Morse-Smale conditions and an additional technical assumption in [1] which guarantees a natural smooth manifold-with-boundary-and-corners structure on the compactified Morse trajectory spaces \overline {\mathcal  {M}}(L,L),\overline {\mathcal  {M}}(p^{-},L),\overline {\mathcal  {M}}(L,p^{+}),\overline {\mathcal  {M}}(p^{-},p^{+}) for p^{\pm }\in {\text{Crit}}(f). With that data and the fixed almost complex structure J we can construct the moduli spaces of disk trees for any tuple x_{0},x_{1},\ldots ,x_{d}\in {{\rm {Crit}}}(f) as in JL:

{\mathcal  {M}}(x_{0};x_{1},\ldots ,x_{d}):={\bigl \{}(T,\underline {\gamma },\underline {z},\underline {u})\,{\big |}\,{\text{1. - 5.}}{\bigr \}}/\sim

where

  1. T is an ordered tree with the following structure on the sets of vertices V and edges E:
    • The edges E\subset V\times V\setminus \Delta _{V} are oriented towards the root vertex v_{0}\in V of the tree, i.e. for e=(v,w)\in E the outgoing vertex w is still connected to the root after removing e. Thus each vertex v\in V has a unique outgoing edge e_{v}^{0}=(v,\;\cdot \;)\in E and a (possibly empty) set of incoming edges E_{v}^{{{\rm {in}}}}=\{e=(\;\cdot \;,v)\in E\}. Moreover, the set of incoming edges is ordered, E_{v}^{{{\rm {in}}}}=\{e_{v}^{1},\ldots ,e_{v}^{{|v|-1}}\} with |v| denoting the valence - number of attached edges - of v).
    • The set of vertices is partitioned V=V^{m}\sqcup V^{c} into the sets of main vertices V^{m} and the set of critical vertices V^{c}=\{v_{0}^{c},v_{1}^{c},\ldots v_{d}^{c}\}. The latter is ordered to start with the root v_{0}^{c}=v_{0}, which is required to have a single edge \{e_{{v_{0}}}^{1}\}=E_{{v_{0}}}^{{{\rm {in}}}}, and then contains d leaves v_{i}^{c} of the tree (i.e. with E_{{v_{i}^{c}}}^{{{\rm {in}}}}=\emptyset ), with order induced by the orientation and order of the edges (with the root being the minimal vertex).
  2. \underline {\gamma }=(\underline {\gamma }_{e})_{{e\in E}} is a tuple of generalized Morse trajectories in the following compactified Morse trajectory spaces:
    • \underline {\gamma }_{e}\in \overline {\mathcal  {M}}(x_{i},x_{j}) for any edge e=(v_{i}^{c},v_{j}^{c}) between critical vertices;
    • \underline {\gamma }_{e}\in \overline {\mathcal  {M}}(x_{i},L) for any edge e=(v_{i}^{c},w) from a critical vertex v_{i}^{c} to a main vertex w\in V^{m};
    • \underline {\gamma }_{e}\in \overline {\mathcal  {M}}(L,x_{j}) for any edge e=(v,v_{j}^{c}) from a main vertex v\in V^{m} to a critical vertex v_{j}^{c};
    • \underline {\gamma }_{e}\in \overline {\mathcal  {M}}(L,L) for any edge e=(v,w) between main vertices v,w\in V^{m}.
  3. \underline {z}=(\underline {z}_{v})_{{v\in V^{m}}} is a tuple of boundary marked points as follows:
    • For each main vertex v there are |v| pairwise disjoint marked points \underline {z}_{v}=(z_{e}^{v})_{{e\in \{e_{v}^{0}\}\cup E_{v}^{{{\rm {in}}}}}}\subset \partial D on the boundary of a disk.
    • The order \{e_{v}^{0}\}\cup E_{v}^{{{\rm {in}}}}=\{e_{v}^{0},e_{v}^{1},\ldots ,e_{v}^{{|v|-1}}\} of the edges corresponds to a counter-clockwise order of the marked points z_{{e_{v}^{0}}}^{v},z_{{e_{v}^{1}}}^{v},\ldots ,z_{{e_{v}^{{|v|-1}}}}^{v}\in \partial D.
    • The marked points can also be denoted as z_{e}^{-}=z_{e}^{v} and z_{e}^{+}=z_{e}^{w} by the edges e=(v,w)\in E for which v\in V^{m} or w\in V^{m}.
  4. For each main vertex v there is a pseudoholomorphic disk, that is a smooth map u_{v}:D\to M satisfying
    • the Cauchy-Riemann equation \overline \partial _{J}u_{v}=0,
    • Lagrangian boundary conditions u_{v}(\partial D)\subset L<\infty ,
    • the finite energy condition \textstyle \int _{D}u_{v}^{*}\omega <\infty .
    • The pseudholomorphic disks can also be indexed as u_{e}^{-}=u_{v} and u_{e}^{+}=u_{w} by the edges e=(v,w)\in E for which v\in V^{m} or w\in V^{m}. In that notation, they satisfy the matching conditions with the generalized Morse trajectories u_{e}^{\pm }(z_{e}^{\pm })={{\rm {ev}}}^{\pm }(\underline {\gamma }_{e}) whenever v_{e}^{\pm }\in V^{m}.
  5. The disk tree is stable in the sense that any main vertex v\in V^{m} whose disk has zero energy \textstyle \int u_{v}^{*}\omega =0 (which is equivalent to u_{v} being constant) has valence |v|\geq 3.


Finally, two disk trees are equivalent (T,\underline {\gamma },\underline {z},\underline {u})\sim (T',\underline {\gamma }',\underline {z}',\underline {u}') if there is a tree isomorphism \zeta :T\to T' and a tuple of disk automorphisms (\psi _{v})_{{v\in V^{m}}} such that

  • T preserves the tree structure and order of edges;
  • the Morse trajectories are the preserved \underline {\gamma }_{e}=\underline {\gamma }'_{{\zeta (e)}} for every e\in E;
  • the marked points are preserved \psi _{v}(\underline {z}_{v})=\underline {z}'_{{\zeta (v)}} for every v\in V^{m};
  • the pseudoholomorphic disks are related by reparametrization, u_{v}=u'_{{\zeta (v)}}\circ \psi _{v} for every v\in V^{m}.



todo



TODO: if J with no spheres, then compact and trivial isotropy JL,Prop.2.5


... otherwise add spheres as below and gnerally nontrivial isotropy

Pseudoholomorphic polygons for pairwise transverse Lagrangians

If each consecutive pair of Lagrangians is transverse, i.e. L_{0}\pitchfork L_{1},L_{1}\pitchfork L_{2},\ldots ,L_{{d-1}}\pitchfork L_{d},L_{d}\pitchfork L_{0}, then our construction is based on pseudoholomorphic polygons

u:\Sigma \to M,\qquad u((\partial \Sigma )_{i})\subset L_{i},\qquad \overline \partial _{J}u=0,

where \Sigma =D\setminus \{z_{0},\ldots ,z_{d}\} is a disk with d+1 boundary punctures in counter-clockwise order z_{0},\ldots ,z_{d}\subset \partial D, and (\partial \Sigma )_{i} denotes the boundary component between z_{i},z_{{i+1}} (resp. between z_{{d}},z_{0} for i=d).



General moduli space of pseudoholomorphic polygons

Make up for differences in Hamiltonian symplectomorphisms applied to each Lagrangian by a domain-dependent Hamiltonian perturbation to the Cauchy-Riemann equation




Finally, the symplectic area function \omega :\overline {\mathcal  {M}}(x_{0};x_{1},\ldots ,x_{d})\to \mathbb{R} in each case is given by TODO


Fredholm index Failed to parse (unknown function "\matcal"): \matcal{M}^k(\ldots) = \{ b\in \matcal{M}(\ldots) \,|\, IND ... = k\}