Workshop on Symplectic Field Theory IX: POLYFOLDS FOR SFT
 Lectures 5-9 (version 2.5)

University of Augsburg

27-31 August 2018

Preamble:

Please direct corrections, comments, etc. to joel.fish@umb.edu

Work in progress:
www.polyfolds.org

Hopeful idea: Polyfold Summer School

Topics:

1. Toy-model M-polyfold (standard node)
2. Imprinting method (theory \& example)
3. Imprinting plus operations
4. A basic "LEGO" block
5. New blocks from old (theory \& example)
6. Periodic orbits and nodal interface pairs
7. Preliminary "LEGO" building

Nodal Disk Pair

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)
$$

Nodal Disk Pair

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)
$$

$\hat{y} \subset T_{y} D_{y}$ is an oriented real line
$T_{y} D_{y}$

Nodal Disk Pair

$\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)$
$\hat{y} \subset T_{y} D_{y}$ is an oriented real line $T_{y} D_{y}$

$\underline{\text { Natural angles }}$

Circle action on decorations:

$$
(\theta, \hat{x}) \rightarrow \theta * \hat{x}:=e^{2 \pi i \theta} \hat{x}
$$

Equivalence relation on decorated nodal pairs:

$$
\{\hat{x}, \hat{y}\} \sim\left\{\hat{x}^{\prime}, \hat{y}^{\prime}\right\} \text { iff } \exists \theta \in S^{1}=\mathbb{R} / \mathbb{Z}
$$

such that

$$
\hat{x}^{\prime}=\theta * \hat{x} \text { and } \hat{y}^{\prime}=\theta^{-1} * \hat{y}
$$

Natural angles

Circle action on decorations:

$$
(\theta, \hat{x}) \rightarrow \theta * \hat{x}:=e^{2 \pi i \theta} \hat{x}
$$

A natural angle is then defined as an element in the associated equivalence class, or alternatively as

$$
[\hat{x}, \hat{y}]=\left\{\left\{\theta * \hat{x}, \theta^{-1} * \hat{y}\right\}: \theta \in S^{1}\right\}
$$

Gluing Paremeters

Associated to a nodal disk pair

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)
$$

we define the associated set of gluing parameters

$$
\mathbb{B}_{\mathcal{D}}
$$

as formal expressions of the form

$$
r \cdot[\hat{x}, \hat{y}]
$$

Cylinders Z_{a}

Given a nodal disk pair $\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)$ and a gluing parameter $a=r \cdot[\hat{x}, \hat{y}] \in \mathbb{B}_{\mathcal{D}}$ with $r>0$ define the cylinder

$$
\begin{aligned}
Z_{a}=\left\{\left\{z, z^{\prime}\right\}: z\right. & \in D_{x}, z^{\prime} \in D_{y} \\
& \left.h_{\hat{x}}(z) \cdot h_{\hat{y}}\left(z^{\prime}\right)=e^{-2 \pi \varphi(r)}\right\}
\end{aligned}
$$

for $a=0$ i.e. $r=0$ define

$$
Z_{a}=D_{x} \sqcup D_{y}
$$

Cylinders Z_{a}

The maps

$$
\begin{aligned}
& \sigma_{\hat{x}}^{+}:[0, \infty) \times S^{1} \rightarrow D_{x} \\
& \sigma_{\hat{y}}^{-}:(-\infty, 0] \times S^{1} \rightarrow D_{y}
\end{aligned}
$$

induces coordinates on D_{x} and D_{y} via
$z=(s, t) \in[0, \infty) \times S^{1} \quad$ for $\quad z \in D_{x}$
$z^{\prime}=\left(s^{\prime}, t^{\prime}\right) \in(-\infty, 0] \times S^{1}$ for $\quad z^{\prime} \in D_{y}$

Cylinders Z_{a}

These induce coordinates on the Z_{a} which can alternately be described as

$$
\begin{aligned}
Z_{a}=\left\{\left\{(s, t),\left(s^{\prime}, t^{\prime}\right)\right\}:(s, t)\right. & \in[0, R] \times S^{1}, \\
\left(s^{\prime}, t^{\prime}\right) & \in[-R, 0] \times S^{1} \\
s & =s^{\prime}+R, \\
t & \left.=t^{\prime}+\theta\right\}
\end{aligned}
$$

where $R=\varphi(|a|)$

Cylinders Z_{a} Takeaway

$$
\begin{gathered}
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right) \\
\left(\mathbb{B}_{\mathcal{D}}, \mathcal{D}\right) \xrightarrow{\longrightarrow} \mathbb{B}_{\mathcal{D}} \\
a \neq a^{\prime} \Longrightarrow Z_{a \in \mathbb{B}_{\mathcal{D}}} Z_{a} \\
a=Z_{a^{\prime}} \\
a=r \cdot[\hat{x}, \hat{y}] \in \mathbb{B}_{\mathcal{D}}
\end{gathered}
$$

Disconnected Function Spaces

$$
\begin{gathered}
\delta: 0<\delta_{0}<\delta_{1}<\cdots \\
E_{\mathcal{D}}^{\delta_{0}}=\mathbb{R}^{N} \oplus H^{3, \delta_{0}}\left(D_{x} \sqcup D_{y}, \mathbb{R}^{N}\right) \\
X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)=E_{\mathcal{D}}^{\delta_{0}} \sqcup\left(\bigcup_{0<|a|<\frac{1}{4}} H^{3}\left(Z_{a}, \mathbb{R}^{N}\right)\right)
\end{gathered}
$$

We aim to equip $X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)$ with an M-polyfold structure

Theorem: Imprinting Method

Given:

 $\oplus \circ H=I d$
$H \circ \oplus$ is sc ${ }^{\infty}$

Then:

- Y is an M-polyfold
- \oplus and each H is sc ${ }^{\infty}$

Specific Imprinting

$$
\begin{gathered}
\oplus: \mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \rightarrow X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \\
\oplus_{a}\left(u^{+}, u^{-}\right): Z_{a} \rightarrow \mathbb{R}^{N} \\
\oplus_{a}\left(u^{+}, u^{-}\right)\left(\left\{(s, t),\left(s^{\prime}, t^{\prime}\right)\right\}\right)= \\
\beta\left(|s|-\frac{1}{2} R\right) \cdot u^{+}(s, t)+\beta\left(\left|s^{\prime}\right|-\frac{1}{2} R\right) \cdot u^{-}\left(s^{\prime}, t^{\prime}\right)
\end{gathered}
$$

Recall:

$$
\begin{aligned}
E_{\mathcal{D}}^{\delta_{0}} & =\mathbb{R}^{N} \oplus H^{3, \delta_{0}}\left(D_{x} \sqcup D_{y}, \mathbb{R}^{N}\right) \\
X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) & =E_{\mathcal{D}}^{\delta_{0}} \sqcup\left(\bigcup_{0<|a|<\frac{1}{4}} H^{3}\left(Z_{a}, \mathbb{R}^{N}\right)\right)
\end{aligned}
$$

Housekeeping Theorem 1

Given:

Imprintings

$$
\oplus_{1}: X_{1} \rightarrow Y_{1}
$$

Then:

$$
\begin{gathered}
\oplus_{1} \times \oplus_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2} \\
\oplus_{1} \sqcup \oplus_{2}: X_{1} \sqcup X_{2} \rightarrow Y_{1} \sqcup Y_{2}
\end{gathered}
$$

are imprintings

Example: Disjoint Union

Given:

two nodal disk pairs

$$
\begin{aligned}
& \mathcal{D}_{1}=\left(D_{x_{1}} \sqcup D_{y_{1}},\left\{x_{1}, y_{1}\right\}\right) \\
& \mathcal{D}_{2}=\left(D_{x_{2}} \sqcup D_{y_{2}},\left\{x_{2}, y_{2}\right\}\right)
\end{aligned}
$$

and imprintings

$$
\begin{aligned}
& \oplus_{1}: \mathbb{B}_{\mathcal{D}_{1}} \times E_{\mathcal{D}_{1}}^{\delta_{0}} \rightarrow X_{\mathcal{D}_{1}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \\
& \oplus_{2}: \mathbb{B}_{\mathcal{D}_{2}} \times E_{\mathcal{D}_{2}}^{\delta_{0}} \rightarrow X_{\mathcal{D}_{2}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)
\end{aligned}
$$

Then:

- $X_{\mathcal{D}_{1}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \sqcup X_{\mathcal{D}_{2}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)$ is an M-polyfold
- $\oplus_{1} \sqcup \oplus_{2} \quad$ is an imprinting

Housekeeping Theorem 2

Given:

Then:

- \oplus_{2} is an imprinting if and only if
- $\oplus_{2} \circ \oplus_{1}$ is an imprinting
- Moreover: coherence.

Housekeeping Theorem 3

Given:

$$
X^{\prime}:=\oplus^{-1}\left(\phi\left(Y^{\prime}\right)\right)
$$ is a sub-M-polyfold

Then:
 injective

$\phi^{*} \oplus: X^{\prime} \rightarrow Y^{\prime}$ is an imprinting, where

$$
\phi^{*} \oplus:=\left.\phi^{-1} \circ \oplus\right|_{X^{\prime}}
$$

Housekeeping Theorem 3

Given:

$$
X^{\prime}:=\oplus^{-1}\left(\phi\left(Y^{\prime}\right)\right)
$$

is a sub-M-polyfold

Then:
$\phi^{*} \oplus: X^{\prime} \rightarrow Y^{\prime}$ is an imprinting, where

$$
\phi^{*} \oplus:=\left.\phi^{-1} \circ \oplus\right|_{X^{\prime}}
$$

Imprinting with restrictions (\oplus, \mathbf{p})

Imprinting with restrictions -- Example

Recall, the nodal disk pair

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)
$$

gives rise to the imprinting

$$
\begin{gathered}
\oplus: \mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \rightarrow X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \\
E_{\mathcal{D}}^{\delta_{0}}=\mathbb{R}^{N} \oplus H^{3, \delta_{0}}\left(D_{x} \sqcup D_{y}, \mathbb{R}^{N}\right) \\
X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)=E_{\mathcal{D}}^{\delta_{0}} \sqcup\left(\bigcup_{0<|a|<\frac{1}{4}} H^{3}\left(Z_{a}, \mathbb{R}^{N}\right)\right)
\end{gathered}
$$

Imprinting with restrictions -- Example

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)
$$

yields and imprinting with restrictions

$$
\mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \xrightarrow{\oplus} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)
$$

Imprinting with restrictions -- Example

yields and imprinting with restrictions

$$
\begin{aligned}
& \mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \xrightarrow{\oplus} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \quad H^{3}\left(S, \mathbb{R}^{N}\right) \\
& p_{x} \\
& H^{3}\left(A_{x}, \mathbb{R}^{N}\right) \quad H^{3}\left(A_{y}, \mathbb{R}_{\vec{a}}^{N}\right)
\end{aligned}
$$

Imprinting with restrictions -- Example

yields the M-polyfold

$$
X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)_{p_{y} \times p_{y}^{\prime}} H^{3}\left(S, \mathbb{R}^{N}\right)
$$

Imprinting with restrictions -- Example

and more importantly yields an imprinting with restrictions

$$
(\oplus \times I d)^{-1}\left(X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)_{p_{y} \times p_{y}^{\prime}} H^{3}\left(S, \mathbb{R}^{N}\right)\right) \xrightarrow{\phi^{*}(\oplus \times I d)} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)_{p_{y} \times p_{y}^{\prime}} H^{3}\left(S, \mathbb{R}^{N}\right)
$$

where ϕ is the inclusion
$X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)_{p_{y} \times p_{y}^{\prime}} H^{3}\left(S, \mathbb{R}^{N}\right) \xrightarrow{\phi} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \times H^{3}\left(S, \mathbb{R}^{N}\right)$

$$
H^{3}\left(A_{x}, \mathbb{R}^{N}\right)
$$

Imprinting with restrictions -- Theorem

The fiber product over annular restrictions of imprintings with restrictions, is again an imprinting with restrictions

Feature: Projection to gluing parameter

$$
\begin{aligned}
& \mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right) \\
& A_{x} \longrightarrow \underbrace{x}\} \cdot y \\
& \mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \xrightarrow{\oplus} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \xrightarrow{p_{\mathbb{B}_{\mathcal{D}}}} \mathbb{B}_{\mathcal{D}} \\
& H^{3}\left(A_{x}, \mathbb{R}^{N}\right) \\
& H^{3}\left(A_{y}, \mathbb{R}^{N}\right)
\end{aligned}
$$

Definition: Submersive imping restrictions

 Basic LEGO block
Definition: Basic LEGO Block

Definition: Basic LEGO Block

For each $\left(x_{0}, f \circ \oplus\left(x_{0}\right)\right) \in \operatorname{Gr}(f \circ \oplus) \subset X \times Z$ there exists an open nbhd $W \subset X \times Z$ and sc-smooth map $\rho: W \rightarrow W$ of the form $\rho(x, z)=(\bar{\rho}(x, z), z)$ such that $\rho \circ \rho=\rho$

$$
\rho(W)=W \cap \operatorname{Gr}(f \circ \oplus)
$$

$$
p_{i} \circ \oplus \circ \bar{\rho}(x, z)=p_{i}(x)
$$

Benefits of LEGO blocks:

Given LEGO blocks (\oplus, \mathbf{p}, f) and $\left(\oplus^{\prime}, \mathbf{p}^{\prime}, f^{\prime}\right)$ the fiber product over f and f^{\prime} is another LEGO block.

If the \mathbf{p} and \mathbf{p}^{\prime} are restrictions to annular neighborhoods, then the fiber product over elements of the \mathbf{p} and \mathbf{p}^{\prime} is also another LEGO block.

From \mathbb{R}^{N} to manifolds

With $X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)$ defined, we now aim to define $X_{\mathcal{D}, \varphi}^{\delta_{0}}(Q)$ where Q is a manifold.

Let

- $\Phi: Q \rightarrow \mathbb{R}^{N}$ be an embedding
- $U \subset \mathbb{R}^{N}$ be an open neighborhood of $\Phi(Q)$
- pr : $U \rightarrow U$ a smooth retraction onto $\Phi(Q)$
i.e. $\quad \operatorname{pr} \circ \mathrm{pr}=\mathrm{pr} \quad \operatorname{pr}(U)=\Phi(Q)$

From \mathbb{R}^{N} to manifolds

Then $\mathcal{U}:=\left\{u \in X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right): \operatorname{Im}(u) \subset U\right\}$ is open and the map

$$
\begin{aligned}
& \rho: \mathcal{U} \rightarrow \mathcal{U} \\
& \rho(u)=\operatorname{pr} \circ u
\end{aligned}
$$

is an sc-smooth retraction.
This defines an M-polyfold structure on

$$
X_{\mathcal{D}, \varphi}^{\delta_{0}}(Q)_{\Phi, \mathbb{R}^{N}}=\bigcup_{a \in \mathbb{B}_{\mathcal{D}}}\left\{u \in \mathcal{C}^{0}\left(Z_{a}, Q\right): \Phi \circ u \in \rho(\mathcal{U})\right\}
$$

moreover $X_{\mathcal{D}, \varphi}^{\delta_{0}}(Q)_{\Phi, \mathbb{R}^{N}}=X_{\mathcal{D}, \varphi}^{\delta_{0}}(Q)_{\Phi^{\prime}, \mathbb{R}^{N^{\prime}}}$ as M-polyfolds, so we simply write $X_{\mathcal{D}, \varphi}^{\delta_{0}}(Q)$

The periodic orbit case

Introduce

- periodic orbit: $\gamma=([\gamma], T, k)$
- weighted periodic orbit $\bar{\gamma}=(\gamma, \delta)$

$$
\text { with } \delta=\left(\delta_{k}\right)_{k=0}^{\infty}
$$

- ordered nodal disk pair

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},(x, y)\right)
$$

The periodic orbit case

We define the function space $Z_{\mathcal{D}}\left(\mathbb{R} \times \mathbb{R}^{N}, \bar{\gamma}\right)$ to be the set of tuples ($\left.\tilde{u}^{x},[\hat{x}, \hat{y}], \tilde{u}^{y}\right)$ where

$$
\begin{aligned}
& \tilde{u}^{x}: D_{x} \backslash\{x\} \rightarrow \mathbb{R} \times \mathbb{R}^{N} \\
& \tilde{u}^{y}: D_{y} \backslash\{y\} \rightarrow \mathbb{R} \times \mathbb{R}^{N} \\
& {[\hat{x}, \hat{y}] \text { is a natural angle }}
\end{aligned}
$$

and for holomorphic polar coordinates $\sigma_{\hat{x}}^{+}$and $\sigma_{\hat{y}}^{-}$ associated to a representative (\hat{x}, \hat{y}) of $[\hat{x}, \hat{y}]$ there exists $\gamma \in[\gamma]$ such that

$$
\begin{aligned}
\tilde{u}^{x} \circ \sigma_{\hat{x}}^{+}(s, t) & =\left(T s+c^{x}, \gamma(k t)\right)+\tilde{r}^{x}(s, t) \\
\tilde{u}^{y} \circ \sigma_{\hat{y}}^{-}\left(s^{\prime}, t^{\prime}\right) & =\left(T s^{\prime}+c^{y}, \gamma\left(k t^{\prime}\right)\right)+\tilde{r}^{y}\left(s^{\prime}, t^{\prime}\right)
\end{aligned}
$$

here $\tilde{r}^{x}, \tilde{r}^{y} \in H^{3, \delta_{0}}$

The periodic orbit case

Theorem:
$Z_{\mathcal{D}}\left(\mathbb{R} \times \mathbb{R}^{N}, \bar{\gamma}\right)$ is an ssc-Hilbert manifold.

The periodic orbit case

$\mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \xrightarrow{\oplus} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right) \xrightarrow{p_{\mathbb{B}_{\mathcal{D}}}} \mathbb{B}_{\mathcal{D}}$
 Recall:

The periodic orbit case

$Y_{\mathcal{D}, \varphi}^{3, \delta_{0}}=\left(\{0\} \times Z_{\mathcal{D}}\left(\mathbb{R} \times \mathbb{R}^{N}, \bar{\gamma}\right)\right) \sqcup$

$$
\left((0,1) \times \bigsqcup_{0<|a|<\frac{1}{4}} H^{3}\left(Z_{a}, \mathbb{R} \times \mathbb{R}^{N}\right)\right)
$$

The periodic orbit case

$\mathfrak{Z}=[0,1) \times Z_{\mathcal{D}}\left(\mathbb{R} \times \mathbb{R}^{N}, \bar{\gamma}\right)$
i.e. elements of the form

$$
(r, \tilde{u}) \text { with } \tilde{u}=\left(\tilde{u}^{x},[\hat{x}, \hat{y}], \tilde{u}^{y}\right)
$$

The periodic orbit case

$\mathcal{V}=\{(r, \tilde{u}) \in \mathfrak{Z}:$ either $r=0$, or else $r>0$ and $(*)$ holds $\}$
(*)

$$
\varphi(r)+c^{y}-c^{x}>0
$$

$$
\varphi^{-1}\left(\frac{1}{T} \cdot\left(\varphi(r)+c^{x}-c^{y}\right)\right) \in\left(0, \frac{1}{4}\right)
$$

The periodic orbit case

$\bar{\oplus}: \mathcal{V} \rightarrow Y_{\mathcal{D}, \varphi_{0}}^{3, \delta_{0}}$

$\bar{\oplus}\left(0,\left(\tilde{u}^{x},[\hat{x}, \hat{y}], \tilde{u}^{y}\right)\right)=\left(0,\left(\tilde{u}^{x},[\hat{x}, \hat{y}], \tilde{u}^{y}\right)\right)$
$\bar{\oplus}\left(r,\left(\tilde{u}^{x},[\hat{x}, \hat{y}], \tilde{u}^{y}\right)\right)=\left(r, \oplus_{a}\left(\tilde{u}^{x},\left(\varphi(r) * \tilde{u}^{y}\right)\right)\right)$
where

$$
a=|a| \cdot[\hat{x}, \hat{y}] \quad T \cdot \varphi(|a|)=\varphi(r)+c^{y}-c^{x}
$$

The periodic orbit case

where

$$
p_{x}(r, \tilde{w})=\left.\tilde{w}\right|_{A_{x}} \quad p_{y}(r, \tilde{w})=\left.((-\varphi(r)) * \tilde{w})\right|_{A_{y}}
$$

The periodic orbit case

Theorem:
$\left(\bar{\oplus},\left\{p_{x}, p_{y}\right\}, p_{[0,1)}\right)$ is a
subersive imprinting with restrietions. LEGO block.

The periodic orbit case

Theorem:

There is a functorial construction which extends to targets $\mathbb{R} \times Q$ from $\mathbb{R} \times \mathbb{R}^{N}$

Three important cases

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)
$$

$\mathbb{B}_{\mathcal{D}} \times E_{\mathcal{D}}^{\delta_{0}} \xrightarrow{\oplus} X_{\mathcal{D}, \varphi}^{\delta_{0}}\left(\mathbb{R}^{N}\right)$

$$
\mathcal{D}=\left(D_{x} \sqcup D_{y},(x, y)\right)
$$

$$
\xrightarrow[\bar{\oplus}]{\sim}
$$

Three important cases

Three important cases

$$
\begin{aligned}
& \mathcal{D}_{1}=\left(D_{x_{1}} \sqcup D_{y_{1}},\left(x_{1}, y_{1}\right)\right) \\
& \mathcal{D}_{2}=\left(D_{x_{2}} \sqcup D_{y_{2}},\left(x_{2}, y_{2}\right)\right) \\
& \mathcal{V}_{1} \xrightarrow{\bar{\oplus}_{1}} Y_{\mathcal{D}_{1}, \varphi}^{3, \delta_{0}} \xrightarrow{p_{[0,1)}}[0,1) \quad \mathcal{V}_{2} \xrightarrow{\bar{\oplus}_{2}} Y_{\mathcal{D}_{2}, \varphi}^{3, \delta_{0}} \xrightarrow{p_{[0,1)}}[0,1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Need the pull back of this diagram by } \Delta
\end{aligned}
$$

Building -- Road Map

Data Preparation:

interface maps

Given:

stable map: $\alpha=\left(\alpha_{0}, \hat{b}_{1}, \alpha_{1}, \hat{b}_{2}, \ldots, \hat{b}_{k}, \alpha_{k}\right)$
floors
floor: $\quad \alpha_{i}=\left(\Gamma_{i}^{-}, S_{i}, j_{i}, M_{i}, D_{i},\left[\tilde{u}_{i}\right], \Gamma_{i}^{+}\right)$
automorphism group preserving floor structure:

$$
G
$$

Data Preparation:

$$
\alpha_{i}=\left(\Gamma_{i}^{-}, S_{i}, j_{i}, M_{i}, D_{i},\left[\tilde{u}_{i}\right], \Gamma_{i}^{+}\right)
$$

$\left(S_{i}, j_{i}\right)$ Riemann surface
M_{i} marked points
D_{i} nodal pairs
Γ_{i}^{-}negative punctures
Γ_{i}^{+}positive punctures
$\left[\tilde{u}_{i}\right]$ eq. class of maps
$\left(a_{i}, u_{i}\right)=\tilde{u}_{i} \sim c * \tilde{u}_{i}=\left(a_{i}+c, u_{i}\right)$

Data Preparation:

Data Preparation:

Data Preparation:

Building -- Road Map

Data Preparation:

$$
\begin{gathered}
\alpha=\left(\alpha_{0}, \hat{b}_{1}, \alpha_{1}, \hat{b}_{2}, \ldots, \hat{b}_{k}, \alpha_{k}\right) \\
\sigma=\left(\sigma_{0}, b_{1}, \sigma_{1}, b_{2}, \ldots, b_{k}, \sigma_{k}\right)
\end{gathered}
$$

$$
\begin{gathered}
\alpha_{i}=\left(\Gamma_{i}^{-}, S_{i}, j_{i}, M_{i}, D_{i},\left[\tilde{u}_{i}\right], \Gamma_{i}^{+}\right) \\
\sigma_{i}=\left(\Gamma_{i}^{-}, S_{i}, j_{i}, D_{i}, \Gamma_{i}^{+}\right)
\end{gathered}
$$

Building -- Road Map

Data Preparation:

$$
\begin{array}{r}
\alpha=\left(\alpha_{0}, \hat{b}_{1}, \alpha_{1}, \hat{b}_{2}, \ldots, \hat{b}_{k}, \alpha_{k}\right) \\
\sigma=\left(\sigma_{0}, b_{1}, \sigma_{1}, b_{2}, \ldots, b_{k}, \sigma_{k}\right) \\
\alpha_{i} \underbrace{=}\left(\Gamma_{i}^{-}, S_{i}, j_{i}, M_{i}, D_{i},\left[\tilde{u}_{i}\right], \Gamma_{i}^{+}\right) \\
\sigma_{i}=\left(\Gamma_{i}^{-}, S_{i}, j_{i}, D_{i}, \Gamma_{i}^{+}\right)
\end{array}
$$

add small disk structures:
\mathbf{D}_{i}^{+}about $\Gamma_{i}^{+} \quad i \in\{0,1, \ldots, k-1\}$
$\mathbf{D}_{i} \quad$ about $\left|D_{i}\right| i \in\{0,1, \ldots, k\}$
\mathbf{D}_{i}^{-}about $\Gamma_{i}^{-} \quad i \in\{1,2, \ldots, k\}$
add anchor points:

$$
\mathrm{J}_{i}=\mathrm{J} \cap S_{i} \neq \emptyset
$$

all data G invariant

Fragmentation -- Focus on a floor

Building -- Road Map

Fragmentation -- Focus on a floor

Fragmentation -- Focus on a floor

Fragmentation -- Focus on a floor

Fragmentation -- Focus on a floor

Fragmentation -- Focus on a floor

$$
\begin{aligned}
& \mathcal{S}_{i}=\left\{\tilde{u} \in H^{3}\left(\Sigma_{i}\right): \operatorname{av}_{J_{i}}(\tilde{u})=0\right\} \\
& \mathcal{A}_{i}^{-}=H^{3}\left(A_{i}^{-}, \mathbb{R} \times \mathbb{R}^{N}\right) \\
& \mathcal{A}_{i}=H^{3}\left(A_{i}, \mathbb{R} \times \mathbb{R}^{N}\right) \\
& \text { LEGO block } \\
& \mathcal{A}_{i}^{+}=H^{3}\left(A_{i}^{+}, \mathbb{R} \times \mathbb{R}^{N}\right) \\
& \mathcal{A}_{i}^{+} \\
& \uparrow \operatorname{restr}_{i}^{+} \\
& \mathcal{S}_{i} \xrightarrow{\oplus=\mathrm{Id}} \mathcal{S}_{i} \xrightarrow{\operatorname{restr}_{i}} \mathcal{A}_{i} \\
& \operatorname{restr}_{i}^{-} \\
& \mathcal{A}_{i}^{-}
\end{aligned}
$$

Fragmentation -- Focus on a floor

Fragmentation -- Construct a building

Recall: $\quad \mathcal{D}=\left(D_{x} \sqcup D_{y},\{x, y\}\right)$

$\left.p_{x} / A_{x}, \mathbb{R}^{N}\right)$

$$
\underline{\underline{E_{\mathcal{D}}^{\delta_{0}}}}=\mathbb{R}^{N} \oplus H^{3, \delta_{0}}\left(D_{x} \sqcup D_{y}, \mathbb{R}^{N}\right)
$$

Fragmentation -- Construct a building

Recall:

Fragmentation -- Construct a building

Recall:

$$
\mathcal{D}=\left(D_{z} \sqcup D_{z^{\prime}},\left(z, z^{\prime}\right)\right)
$$

$H^{3}\left(A_{z}, \mathbb{R} \times \mathbb{R}^{N}\right) \quad H^{3}\left(A_{z^{\prime}}, \mathbb{R} \times \mathbb{R}^{N}\right)$

$$
\mathcal{V} \subset[0,1) \times \frac{Z_{\mathcal{D}}}{\mathbb{T}}\left(\mathbb{R} \times \mathbb{R}^{N}, \bar{\gamma}\right)
$$

$$
\tilde{u}^{z} \circ \sigma_{\hat{x}}^{+}(s, t)=\left(T s+c^{z}, \gamma(k t)\right)+\tilde{r}^{z}(s, t)
$$

$$
\tilde{u}^{z^{\prime}} \circ \sigma_{\hat{y}}^{-}\left(s^{\prime}, t^{\prime}\right)=\left(T s^{\prime}+c^{z^{\prime}}, \gamma\left(k t^{\prime}\right)\right)+\tilde{r}^{z^{\prime}}\left(s^{\prime}, t^{\prime}\right)
$$

$$
\text { here } \tilde{r}^{z}, \tilde{r}^{z^{\prime}} \in H^{3, \delta_{0}}
$$

Recall:

$$
\begin{aligned}
& \Sigma_{i}:=\left(S_{i} \backslash\left(\mathbf{D}_{i}^{+} \cup \mathbf{D}_{i} \cup \mathbf{D}_{i}^{-}\right)\right) \cup\left(A_{i}^{+} \cup A_{i} \cup A_{i}^{-}\right) \\
& \mathcal{S}_{i}:=\left\{\tilde{u} \in H^{3}\left(\Sigma_{i}\right): \operatorname{av}_{\lambda_{i}}(\tilde{u})=0\right\} \\
& \operatorname{av}_{\lambda_{i}}(\tilde{u}):=\frac{1}{\# \mathrm{~J}_{i}} \cdot \sum_{z \in \mathcal{X}_{i}} a_{i}(z) \\
& \Gamma:=\bigcup_{i=0}^{k}\left(\Gamma_{i}^{+} \cup \Gamma_{i}^{-}\right) \\
& \overline{\mathbf{F}}: \Gamma \rightarrow\left\{\bar{\gamma}: \text { weighted periodic orbit in } \mathbb{R}^{N}\right\} \\
& \text { which satisfies } \overline{\mathbf{F}}(z)=\overline{\mathbf{F}}\left(b_{i}(z)\right) \text { for each } \\
& z \in \Gamma_{i}^{+} \text {and } i \in\{0, \ldots, k-1\}
\end{aligned}
$$

Define ssc-Hilbert manifold $Z_{\sigma, \mathrm{J}}^{3}\left(\mathbb{R} \times \mathbb{R}^{N}, \overline{\mathbf{F}}\right)$
$Z_{\sigma, \mathrm{J}}^{3}\left(\mathbb{R} \times \mathbb{R}^{N}, \overline{\mathbf{F}}\right)=$
$Z_{\mathcal{D}_{0}}^{-} \times_{\mathcal{A}_{0}^{-}} \quad$ Negative ends of bottom level
(truncated) floor $0 \quad \mathcal{S}_{0} \times_{\mathcal{A}_{0}} E_{\mathcal{D}_{0}}$
$\times_{\mathcal{A}_{0}^{+}} Z_{\mathcal{D}_{1}} \times{ }_{\mathcal{A}_{1}^{-}} \quad$ Interface level 1
(truncated) floor $1 \quad \mathcal{S}_{1} \times_{\mathcal{A}_{1}} E_{\mathcal{D}_{1}}$
$\times_{\mathcal{A}_{1}^{+}} Z_{\mathcal{D}_{2}} \times{ }_{\mathcal{A}_{2}^{-}} \quad$ Interface level 2
(truncated) floor $2 \quad \mathcal{S}_{2} \times_{\mathcal{A}_{2}} E_{\mathcal{D}_{2}}$
$\times_{\mathcal{A}_{2}^{+}} Z_{\mathcal{D}_{3}} \times{ }_{\mathcal{A}_{3}^{-}} \quad$ Interface level 3
$\times_{\mathcal{A}_{k-1}^{+}} Z_{\mathcal{D}_{k}} \times_{\mathcal{A}_{k}^{-}}$Interface level k
(trucated) floor k $\quad \mathcal{S}_{k} \times_{\mathcal{A}_{k}} E_{\mathcal{D}_{k}}$
$\times_{\mathcal{A}_{k}^{+}} Z_{\mathcal{D}_{k}}^{+}$

Positive ends of top level

The takeaway:
$Z_{\sigma, \mathrm{J}}^{3}\left(\mathbb{R} \times \mathbb{R}^{N}, \overline{\mathbf{F}}\right)$ is an ssc-manifold consisting of tuples of the form

$$
\tilde{u}:=\left(\tilde{u}_{0}, \hat{b}_{1}, \ldots, \hat{b}_{k}, \tilde{u}_{k}\right)
$$

where each \tilde{u}_{i} is of class $\left(3, \delta_{0}\right)$ and asymptotic to the weighted periodic orbits prescribed by $\overline{\mathbf{F}}$ so that the data across interfaces is \hat{b}_{i} matching, and the anchor averages vanish.

Domain of Imprinting (almost):

ssc-manifold just constructed

$$
\mathbb{B}_{\mathcal{D}} \times[0,1)^{k} \times Z_{\sigma, \mathrm{X}}^{3}\left(\mathbb{R} \times \mathbb{R}^{N}, \overline{\mathbf{F}}\right)
$$

tuple of target gluing parameters one for each interface level
product of domain gluing parameters $\mathbb{B}_{\mathcal{D}_{\{x, y\}}}$ for each $\{x, y\} \in D$

Domain of Imprinting (actual):

$\mathbb{B}_{\mathcal{D}} \times \mathcal{O}$

where $\mathcal{O} \subset[0,1)^{k} \times Z_{\sigma, \lambda}^{3}\left(\mathbb{R} \times \mathbb{R}^{N}, \overline{\mathbf{F}}\right)$ consists of tuples $\left(r_{1}, \ldots, r_{k}, \tilde{u}\right)$ with $r_{i} \in(0,1)$ and $\tilde{u}:=\left(\tilde{u}_{0}, \hat{b}_{1}, \ldots, \hat{b}_{k}, \tilde{u}_{k}\right)$ such that either

1. $r_{i}=0$
2. $\left\{\begin{array}{l}\varphi\left(r_{i}\right)-c^{z}(\tilde{u})+c^{b_{i}(z)}(\tilde{u})>0 \\ \varphi^{-1}\left(\frac{1}{T_{z}} \cdot\left(\varphi\left(r_{i}\right)-c^{z}(\tilde{u})+c^{b_{i}(z)}(\tilde{u})\right) \in\left(0, \frac{1}{4}\right)\right.\end{array}\right.$

Building -- Road Map

$$
\sigma=(S, j, M, D) \quad \text { Let }
$$

$$
\sigma_{\mathfrak{a}}=\left(S_{\mathfrak{a}}, j_{\mathfrak{a}}, M_{\mathfrak{a}}, D_{\mathfrak{a}}\right) \quad \mathfrak{a} \in \mathbb{B}_{\mathcal{D}}
$$

$$
\sigma=\left(\sigma_{0}, b_{1}, \sigma_{1}, b_{2}, \sigma_{2}\right) \quad \text { Let }
$$

$\sigma_{\mathfrak{a}}=$ nonsense
$\mathfrak{a} \in \mathbb{B}_{\mathcal{D}}$

Floors?

$$
\sigma=\left(\sigma_{0}, b_{1}, \sigma_{1}, b_{2}, \sigma_{2}\right)
$$

$\sigma_{\tilde{\mathfrak{a}}}=\left(\sigma_{0}^{\tilde{\mathfrak{d}}}, b_{1}^{\tilde{\mathfrak{a}}}, \sigma_{1}^{\tilde{\mathfrak{a}}}\right)$

Recall:

$$
\begin{aligned}
\alpha & =\left(\alpha_{0}, \hat{b}_{1}, \alpha_{1}, \hat{b}_{2}, \ldots, \hat{b}_{k}, \alpha_{k}\right) \\
\alpha_{i} & =\left(\Gamma_{i}^{-}, S_{i}, j_{i}, M_{i}, D_{i},\left[\tilde{u}_{i}\right], \Gamma_{i}^{+}\right) \\
\sigma_{i} & =\left(\Gamma_{i}^{-}, S_{i}, j_{i}, M_{i}, D_{i}, \Gamma_{i}^{+}\right)
\end{aligned}
$$

Then up to rearrangement:

$$
\alpha=\left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k},\left(\left[\tilde{u}_{i}\right]\right)_{i=0}^{k}\right)
$$

$$
+\left(\mathrm{J}_{i}\right)_{i=0}^{k}
$$

$\left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k}, \underline{\left(\tilde{u}_{i}\right)_{i=0}^{k}},\left(\mathrm{~J}_{i}\right)_{i=0}^{k}\right)$

Then up to rearrangement:

$$
\begin{aligned}
& \alpha=\left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k},\left(\left[\tilde{u}_{i}\right]\right)_{i=0}^{k}\right) \\
& \quad \downarrow+\left(\mathrm{J}_{i}\right)_{i=0}^{k} \\
& \left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k},\left(\tilde{u}_{i}\right)_{i=0}^{k},\left(\mathrm{~J}_{i}\right)_{i=0}^{k}\right)
\end{aligned}
$$

$$
+\left(r_{i}\right)_{i=1}^{k} \in[0,1)^{k} \text { and } \mathbf{a} \in \mathbb{B}_{\mathcal{D}}
$$

conditioned on being in $\mathbb{B}_{\mathcal{D}} \times \mathcal{O}$

$$
\begin{aligned}
& \left.\hat{b}_{i}\right|_{z} \longrightarrow[\hat{x}, \hat{y}]_{\left(z, b_{i}(z)\right)} \quad \text { with } z \in \Gamma_{i}^{+} \\
& \left(z, \tilde{u}_{i}, \tilde{u}_{i+1}, r_{i}\right) \longrightarrow\left|a_{\left(z, b_{i}(z)\right)}\right| \text { via } \\
& T_{\mathbf{F}\left(z, b_{i}(z)\right)} \cdot \varphi\left(\left|a_{\left(z, b_{i}(z)\right)}\right|\right)=\varphi\left(r_{i}\right)-c^{z}\left(\tilde{u}_{i}\right)+c^{b_{i}(z)}\left(\tilde{u}_{i+1}\right) \\
& \longrightarrow|a| \cdot[\hat{x}, \hat{y}]=a
\end{aligned}
$$

$\left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k},\left(\underline{\tilde{u}_{i}}\right)_{i=0}^{k},\left(\mathrm{~J}_{i}\right)_{i=0}^{k}\right)$
$+\left(r_{i}\right)_{i=1}^{k} \in[0,1)^{k}$ and $\mathbf{a} \in \mathbb{B}_{\mathcal{D}}$ conditioned on being in $\mathbb{B}_{\mathcal{D}} \times \mathcal{O}$
$\left.\hat{b}_{i}\right|_{z} \simeq[\hat{x}, \hat{y}]_{\left(z, b_{i}(z)\right)} \quad$ with $z \in \Gamma_{i}^{+}$
$\left(z, \tilde{u}_{i}, \tilde{u}_{i+1}, r_{i}\right) \longrightarrow\left|a_{\left(z, b_{i}(z)\right)}\right|$ via

$$
T_{\mathbf{F}\left(z, b_{i}(z)\right)} \cdot \varphi\left(\left|a_{\left(z, b_{i}(z)\right)}\right|\right)=\varphi\left(r_{i}\right)-c^{z}\left(\tilde{u}_{i}\right)+c^{b_{i}(z)}\left(\tilde{u}_{i+1}\right)
$$

$\longrightarrow|a| \cdot[\hat{x}, \hat{y}]=a$
$\left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k},\left(\tilde{u}_{i}\right)_{i=0}^{k},\left(\mathrm{~J}_{i}\right)_{i=0}^{k}, \underline{\tilde{\mathfrak{a}} \in \mathbb{B}_{\mathrm{ad}}}\right)$

$$
\begin{aligned}
& \left(\left(\sigma_{i}\right)_{i=0}^{k},\left(\hat{b}_{i}\right)_{i=1}^{k},\left(\tilde{u}_{i}\right)_{i=0}^{k},\left(\mathrm{~J}_{i}\right)_{i=0}^{k}, \underline{\tilde{\mathfrak{a}} \in \mathbb{B}_{\mathrm{ad}}}\right) \\
& +\left(\mathbf{D}_{i}\right)_{i=0}^{k}+\left(\mathbf{D}_{i}^{+}\right)_{i=0}^{k-1}+\left(\mathbf{D}_{i}^{-}\right)_{i=1}^{k} \\
& \left(\underline{\left(\sigma_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell},\left(\hat{b}_{\tilde{\mathfrak{a}}, e}\right)_{e=1}^{\ell},\left(\mathrm{J}_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell}},\left(\tilde{u}_{i}\right)_{i=0}^{k},\left(\mathrm{~J}_{\tilde{\mathfrak{a}}, i}^{\operatorname{vir}}\right)_{i=0}^{k}, \tilde{\mathfrak{a}}\right) \\
& \text { for } i_{e} \leq i<i_{e+1} \\
& \tilde{u}_{i}^{*}= \begin{cases}\tilde{u}_{i} & \text { if } i=i_{e}\end{cases} \\
& \left\{\left(\varphi\left(r_{i_{e}+1}\right)+\cdots+\varphi\left(r_{i}\right)\right) * \tilde{u}_{i} \quad\right. \text { otherwise } \\
& \tilde{w}_{e}=\oplus_{\tilde{\mathbf{a}}_{e}}\left(\tilde{u}_{i_{e}}^{*}, \ldots, \tilde{u}_{i_{e+1}-1}^{*}\right) \\
& \left(\left(\sigma_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell},\left(\hat{b}_{\tilde{\mathfrak{a}}, e}\right)_{e=1}^{\ell},\left(\tilde{w}_{e}\right)_{e=0}^{\ell},\left(\mathrm{J}_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell},\left(\mathrm{J}_{\tilde{\mathfrak{a}}, i}^{v i r}\right)_{i=0}^{k}, \tilde{\mathfrak{a}}\right)
\end{aligned}
$$

$$
\left(\underline{\left(\sigma_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell},\left(\hat{b}_{\tilde{\mathfrak{a}}, e}\right)_{e=1}^{\ell},\left(\mathrm{J}_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell}},\left(\tilde{u}_{i}\right)_{i=0}^{k},\left(J_{\tilde{\mathfrak{a}}, i}^{\mathrm{vir}}\right)_{i=0}^{k}, \tilde{\mathfrak{a}}\right)
$$

$$
\text { for } i_{e} \leq i<i_{e+1}
$$

$$
\tilde{u}_{i}^{*}= \begin{cases}\tilde{u}_{i} & \text { if } i=i_{e} \\ \left(\varphi\left(r_{i_{e}+1}\right)+\cdots+\varphi\left(r_{i}\right)\right) * \tilde{u}_{i} & \text { otherwise }\end{cases}
$$

$$
\tilde{w}_{e}=\oplus_{\tilde{\mathfrak{a}}_{e}}\left(\tilde{u}_{i_{e}}^{*}, \ldots, \tilde{u}_{i_{e+1}-1}^{*}\right)
$$

$$
\left(\left(\sigma_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell},\left(\hat{b}_{\tilde{\mathfrak{a}}, e}\right)_{e=1}^{\ell},\left(\tilde{w}_{e}\right)_{e=0}^{\ell},\left(\mathrm{J}_{\tilde{\mathfrak{a}}, e}\right)_{e=0}^{\ell},\left(J_{\tilde{\mathfrak{a}}, i}^{\mathrm{vir}}\right)_{i=0}^{k}, \tilde{\mathfrak{a}}\right)
$$

$$
\in Z_{\boldsymbol{\sigma}, \mathrm{J}, \varphi}^{3, \delta_{0}}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbf{F}\right)
$$

Workhorse Imprinting Theorem:

This defines an imprinting

$$
\bar{\oplus}: \mathbb{B}_{D} \times \mathcal{O} \rightarrow Z_{\sigma, \lambda, \varphi}^{3}\left(\mathbb{R} \times \mathbb{R}^{N}, \overline{\mathbf{F}}\right)
$$

Moreover this functorially extends to an imprinting for

$$
Z_{\boldsymbol{\sigma}, \mathrm{u}, \varphi}^{3}(\mathbb{R} \times Q, \overline{\mathbf{F}})
$$

Building -- Road Map

Transversal Constraints:

Consider a map in $Z_{\boldsymbol{\sigma}, \mathrm{\jmath}, \varphi}^{3}(\mathbb{R} \times Q, \overline{\mathbf{F}})$ fix a G invariant finite set $\Xi=\Xi_{0} \cup \ldots \cup \Xi_{k}$ disjoint from usual interesting sets. For $z \in \Xi_{i}$ let $[z]$ denote its G orbit. There are two types of constraints:

- \mathbb{R} invariant:

Fix co-dimension 2 submanifold $H_{[z]} \subset Q$

$$
\widetilde{H}_{[z]}:=\mathbb{R} \times H_{[z]}
$$

- non \mathbb{R} invariant:

Fix co-dimension 1 submanifold $H_{[z]} \subset Q$

$$
\widetilde{H}_{[z]}:=\left\{\bar{a}_{[z]}\right\} \times H_{[z]}
$$

Transversal Constraints:

This yields an assignment: $\mathcal{H}: z \mapsto \widetilde{H}_{[z]}$

Then define the subset $Z_{\boldsymbol{\sigma}, \mathrm{J}, \mathcal{H}, \varphi}^{3}(\mathbb{R} \times Q, \overline{\mathbf{F}})$ of $Z_{\boldsymbol{\sigma}, \mathrm{J}, \varphi}^{3}(\mathbb{R} \times Q, \overline{\mathbf{F}})$ as those \tilde{w} for which

- $\left(-\operatorname{av}_{\lambda_{i}}(\tilde{w})\right) * \tilde{w}(z) \in \widetilde{H}_{[z]}$
- The above shifted map transversally intersects $\widetilde{H}_{[z]}$

Toy Groupoidal Categories

Toy Groupoidal Categories

Without adding objects,

1) add the fewest morphisms to make this a groupoidal category

2) and without increasing the isotropy at x , add the most morphisms while keeping it a groupoidal category

Toy Groupoidal Categories

Answer

Toy Groupoidal Categories

Same questions:

Toy Groupoidal Categories

Same questions:

Definition -- Groupoidal Category

A groupoidal category is a category \mathcal{C} is a category with the following properties.

1. Every morphism is an isomorphism (i.e. has an inverse).
2. Between any two objects there are only finitely many morphisms.
3. The orbit space $|\mathcal{C}|$, (collection of isomorphism classes) is a set

Definition -- Translation Groupoid

Let \mathcal{O} be an M-polyfold, and G a finite group acting on \mathcal{O} by sc-diffeomorphisms. Then the associated translation groupoid $G \ltimes O$ is the category with

1. Objects O
2. Morphisms $G \times O$ understood as

$$
g \xrightarrow{(g, o)} g * O
$$

Definition -- GCT

A GCT is a pair $(\mathcal{C}, \mathcal{T})$ where \mathcal{C} is a groupoidal category and \mathcal{T} is a metrizable topology on the orbit space $|\mathcal{C}|$.

Definition -- Uniformizer

Given groupoidal category \mathcal{C}, a uniformizer at $c \in \operatorname{Ob}(\mathcal{C})$ with automorphism group G, is a functor $\Psi: G \ltimes O \rightarrow \mathcal{C}$ with the following properties.

1. O is an M-polyfold
2. G acts on O via sc-diffeomorphism
3. $G \ltimes O$ is assoc. translation groupoid
4. there exists $\bar{o} \in O$ s.t. $\Psi(\bar{o})=c$
5. Ψ is injective on objects
6. Ψ is full and faithful

Definition -- Uniformizer Construction

A uniformizer construction is a functor $F: \mathcal{C} \rightarrow$ SET which associates to an object c a set of uniformizers. If for each object c, the set $F(c)$ contains only tame uniformizers, then we shall call F a tame uniformizer construction.

Definition -- Transition Set

Fix a groupoidal category \mathcal{C} and a local uniformizer construction $F: \mathcal{C} \rightarrow \mathrm{SET}$, $\alpha, \alpha^{\prime} \in \operatorname{Ob}(\mathcal{C})$, and local uniformizers $\Psi \in F(\alpha)$ and $\Psi^{\prime} \in F\left(\alpha^{\prime}\right)$, so that

$$
G \ltimes O \xrightarrow{\Psi} \mathcal{C} \stackrel{\Psi^{\prime}}{\leftarrow} G^{\prime} \ltimes O^{\prime}
$$

Define the transition set $\mathbf{M}\left(\Psi, \Psi^{\prime}\right)$ by $\mathbf{M}\left(\Psi, \Psi^{\prime}\right)=\left\{\left(o, \Phi, o^{\prime}\right): o \in O, o^{\prime} \in O^{\prime}\right.$, $\left.\Phi \in \operatorname{Hom}\left(\Psi(o), \Psi^{\prime}\left(o^{\prime}\right)\right)\right\}$

Definition -- Transition Set

$\mathbf{M}\left(\Psi, \Psi^{\prime}\right)=\left\{\left(o, \Phi, o^{\prime}\right): o \in O, o^{\prime} \in O^{\prime}\right.$, $\left.\Phi \in \operatorname{Hom}\left(\Psi(o), \Psi^{\prime}\left(o^{\prime}\right)\right)\right\}$

Recall that the transition set $\mathbf{M}\left(\Psi, \Psi^{\prime}\right)$ is equipped with the following structure maps.

1. source map
2. target map
3. unit map (identity)
4. inversion map
5. multiplication map (composition)

Transition Germ Construction

Transition Germ Construction

Transition Germ Construction

Transition Germ Construction

Transition Germ Construction

Ψ^{\prime}

Transition Germ Construction

Transition Germ Construction

Let F be a uniformizer construction. A transition germ construction \mathcal{G} associates for given $\Psi \in F(c)$ and $\Psi \in F\left(c^{\prime}\right)$ to $h=\left(o, \Phi, o^{\prime}\right) \in \mathbf{M}\left(\Psi, \Psi^{\prime}\right)$ a germ of map $\mathfrak{G}_{h}:(\mathcal{O}, o) \rightarrow\left(\mathbf{M}\left(\Psi, \Psi^{\prime}\right), h\right)$ with the following properties, where $\mathfrak{g}_{h}=t \circ \mathfrak{G}_{h}$.

Transition Germ Construction

Diffeomorphism Property:
The germ $\mathfrak{g}_{h}: \mathcal{O}(O, o) \rightarrow \mathcal{O}\left(O^{\prime}, o^{\prime}\right)$ is a local sc-diffeomorphism and $s\left(\mathfrak{G}_{h}(q)\right)=q$ for q near o. If $\Psi=\Psi^{\prime}$ and $h=(o, \Psi(g, o), g * o)$ then $\mathfrak{G}_{h}(q)=(q, \Psi(g, q), g * q)$ for q near o so that $f_{h}(q)=g * q$.

Transition Germ Construction

Stability Property:
$\mathfrak{G}_{\mathfrak{G}_{h}(q)}(p)=\mathfrak{G}_{h}(p)$ for q near $o=s(h)$ and p near q.

Transition Germ Construction

Identity Property:
$\mathfrak{G}_{u(o)}(q)=u(q)$ for q near o.

Transition Germ Construction

Inversion Property:
$\mathfrak{G}_{\iota(h)}\left(\mathfrak{g}_{h}(q)\right)=\iota\left(\mathfrak{G}_{h}(q)\right)$ for q near $o=s(h)$.
Here $\left.\iota\left(p, \Phi, o^{\prime}\right)\right)=\left(o^{\prime}, \Phi^{-1}, o\right)$.

Transition Germ Construction

Multiplication Property:
If $s\left(h^{\prime}\right)=t(h)$ then $\mathfrak{g}_{h^{\prime}} \circ \mathfrak{g}_{h}(q)=\mathfrak{g}_{m\left(h^{\prime}, h\right)}(q)$ for q near $o=s(h)$, and $m\left(\mathfrak{G}_{h^{\prime}}\left(\mathfrak{g}_{h}(q)\right), \mathfrak{G}_{h}(q)\right)=$ $\mathfrak{G}_{m\left(h, h^{\prime}\right)}(q)$ for q near $o=s(h)$.

Transition Germ Construction

M-Hausdorff Property:
For different $h_{1}, h_{2} \in \mathbf{M}\left(\Psi, \Psi^{\prime}\right)$ with $o=s\left(h_{1}\right)=s\left(h_{2}\right)$ the images under $\mathfrak{G}_{h_{1}}$ and $\mathfrak{G}_{h_{2}}$ of small neighborhoods are disjoint.

Upshot:

Key upshot of transition germ construction:

1. Natural topology \mathcal{T} on $|\mathcal{C}|$
2. $|\Psi|:|O| \rightarrow|\mathcal{C}|$ are homeomoprhisms with image
3. induces M-polyfold structures on the $\mathbf{M}\left(\Psi, \Psi^{\prime}\right)$.
Moreover:
4. If \mathcal{T} is metrizable, then $(\mathcal{C}, \mathcal{T})$ is a GCT.
(this is the case for the category of stable maps)

"Transition Category"

Objects:

(Ψ, o) such that $\Psi: G \ltimes O \rightarrow \mathcal{C}$ $o \in O$
$\left(\Psi^{\prime}, o^{\prime}\right)$

$$
\begin{aligned}
& \Psi^{\prime}: G^{\prime} \ltimes O^{\prime} \rightarrow \mathcal{C}, \\
& o^{\prime} \in O^{\prime}
\end{aligned}
$$

Morphisms:
$\left(o, \Phi, o^{\prime}\right)$ such that $\Phi \in \operatorname{Mor}(\mathcal{C})$

$$
\Psi(o) \xrightarrow{\Phi} \Psi^{\prime}\left(o^{\prime}\right)
$$

object

object

thicken:

$$
(\Psi, \mathcal{O}(o)) \xrightarrow{\left(\mathcal{O}(o), \mathcal{O}(\Phi), \mathcal{O}\left(o^{\prime}\right)\right)}\left(\Psi^{\prime}, \mathcal{O}\left(o^{\prime}\right)\right)
$$

Building charts/uniformizers:

Given
(Q, λ, ω)
J
Base-point
α
Choose
D
J
$\delta_{J}: \mathcal{P}^{*} \rightarrow(0,2 \pi]$
φ
β

$$
\begin{aligned}
& \frac{\text { Determined }}{\mathcal{S}^{3, \delta_{0}}(Q, \lambda, \omega)} \\
& \sigma \quad \bar{\sigma} \\
& G \quad G^{*}
\end{aligned}
$$

Review: Collecting Pieces

Given (background structures)

1. (Q, λ, ω)
(a) Q closed odd dimensional manifold
(b) (λ, ω) non-degenerate stable Hamiltonian structure
2. compatible/admissible almost complex structure J
3. determine spectral gap map, $\delta_{J}: \mathcal{P}^{*} \rightarrow(0,2 \pi]$
4. choose associated weight sequences $\gamma \mapsto \bar{\gamma}$
5. define category of stable maps $\mathcal{S}^{3, \delta_{0}}(Q, \lambda, \omega)$

Review: Collecting Pieces

Choices (for charts)

1. $\alpha=\left(\alpha_{0}, \hat{b}_{1}, \ldots, \hat{b}_{k}, \alpha_{k}\right)$ with isotropy group G
2. determines underlying $\sigma=\left(\sigma_{0}, b_{1}, \ldots, b_{k}, \sigma_{k}\right)$
3. choose stabilization set Ξ with associated transversal constraints $\mathcal{H}_{[z]}$ (two types)
4. choose small disk structure \mathbf{D} and anchor points Υ
5. verify that ...(see next slide)

Review: Collecting Pieces

5. verify that

- the sets $M, \Gamma, \circlearrowright, \Xi, D$ are all pairwise disjoint
- \mathbf{D} is disjoint from M, \boldsymbol{J}, Ξ
- the sets M, Γ, J, Ξ, D and \mathbf{D} are G-invariant
- the Riemann surface $\bar{\sigma}=(S, j, \bar{M}, \bar{D})$ is stable where

$$
\begin{gathered}
\bar{M}=M \cup \Gamma_{0}^{-} \cup \Gamma_{k}^{+} \cup \Xi \\
\bar{D}=D \cup\left\{\left\{z, b_{i}(z)\right\}: z \in \Gamma_{i-1}^{+} \quad i \in\{1, \ldots, k\}\right\}
\end{gathered}
$$

