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Preamble;:
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Work in progress:
www.polyfolds.org

Hopeful idea: Polyfold Summer School



Topics:

A Ao i

Toy-model M-polyfold (standard node)
Imprinting method (theory & example)
Imprinting plus operations

A basic "LEGO" block

New blocks from old (theory & example)
Periodic orbits and nodal interface pairs
Preliminary "LEGQO" building



Nodal Disk Pair D = (D, U Dy,{z,y})

D,

DcC



Nodal Disk Pair

y C T, D, is an oriented real line

D, g(

J D,

C

z C T, D, is an oriented real line
T:D,




Nodal Disk Pair

y C T, D, is an oriented real line

hs ()
Ths (&) =

x 0
) =0

z C T, D, is an oriented real line




Natural angles

Circle action on decorations:
(0,2) = 0% 3 = 203
Equivalence relation on decorated nodal pairs:
12,9} ~{2,9'} iff 3 #e S =R/Z

such that



Natural angles

Circle action on decorations:
(0,2) = 0% 3 = 203

A natural angle is then defined as
an element in the associated equivalence class,
or alternatively as

2,9 = {{0% 2,6 %} :0 €S}



Gluing Paremeters

Associated to a nodal disk pair
D = (Dy U Dy, {z,y})

we define the associated set of gluing parameters

Bp

as formal expressions of the form

r- [z, 9]



Cylinders Z,

Given a nodal disk pair D = (D, U Dy, {z,y}) and
a gluing parameter a =7 - [Z,9] € Bp with r > 0
define the cylinder

Zy = {{z,z’} 1z € Dy, 2 € Dy,
a(2) - (<)) = e-2mel0)}

for a =0 1.e. =0 define
Zo=D,UD,
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Cylinders Z,

The maps
oi :[0,00) x St - D,
oy 1 (—00,0] X St — D,

induces coordinates on [),; and D, via

z = (s,t) €[0,00) x S} for ze€ D,
2= (s,t') € (—0,0] x S for 2’ € D,



Cylinders Z,

These induce coordinates on the Z, which can

alternately be described as

Zy = {{(s,t),(s',t')} : (s,t) € [0, R] x S,
(s',t') € [-R,0] x S!

s=¢s+R,

t=t'+0}

where R = ¢(la|)



B &
BB ok
BB =Bk
BB ok
TERIEE



BB ok




Cylinders Z, Takeaway

D= (D,UDy,{z,y}) —~—"> Bp
(Bp,D) —~—> | Z
a€EBp

a#ad = Z,# Ly

a=r-z,9] € Bp



Disconnected Function Spaces

0:0< g < <>

EX =RN @ H*%(D, UD,,RN)

Xp ,RY) =Epu( |J H’(Z,RY))

0<l|a|<%

We aim to equip X2¢_(R™) with an M-polyfold structure
D,p poly



Theorem: Imprinting Method

Given: D
M-polyfold surjective Set
X
\ A
T@ 1s metrizable Uy € Te
doH=1d

Ho® issc™ Then:
* Yis an M-polyfold
e @ and each H is s¢™



Specific Imprinting

1)
®:Bp x B — X2 _(RY)
So(ut,u™): Z; - RY

@a(u®,u”)({(s,), (s, 1)}) =
B(ls| = 3R) -u* (s, t) + B(|s'| — 3 R) -u™ (s, ')

Recall:
EY =RN @ H*%(D, U D,,RN)

Xp RY)=Exu( |J H)Z.R"Y))

0<|al<%



Housekeeping Theorem 1

Given:

Imprintings

@12X1—>Y1
EBQZXQ—)YQ

Then:

P1 X Do: X1 X Xo—Y XY
@1|_|EB21X1|_|X2%Y1|_|Y2

are imprintings



Example: Disjoint Union

Given:
two nodal disk pairs

D1 = (Dg, U Dy, {z1,91})

Dy = (Dy, U Dy, {22, y2})
and imprintings

®1:Bp, x By — X (RY)

Di,p
@2 : Bp, x B — Xg (RV)

Then:
- Xy SRY) U X%OQ’ -(RY) is an M-polyfold
« 1 U D2 is an imprinting



Housekeeping Theorem 2

Given: D2 0 D1
surjective
X —t sy 2, 7
ﬁ
imprinting surjective
Then:

* D9 is an imprinting if and only if
* Do 0 P17 is an imprinting

* Moreover: coherence.



Housekeeping Theorem 3

_ X @ Y
Given: ~

1mprinting

X' = @_1(¢(Y/)) injective
is a sub-M-polyfold

Y/
Then:
¢*@® : X’ — Y is an imprinting, where

¢*@ =7l 0By,



Housekeeping Theorem 3

. X b Y
Given: 7

1mprinting

X' =07 (o(Y") - N
is a sub-M-polyfold inclusion jective

X Y

Then: P*D
¢*® : X’ — Y’ is an imprinting, where
¢*® = ¢_1 © EB’){/



Imprinting with restrictions (&, p)

imprinting

P = (p17p27° .. 7pn)
pP1

each p; o @ is s¢™




Imprinting with restrictions -- Example

Recall, the nodal disk pair

.@ Dy U Dy, {z,y})

gives rise to the imprinting

@ :Bp x EfY — X _(RY)

EX =RN @ H3% (D, U D, RY)
Xp BN =Epu( ) H)Z.RY))
O<|a|<i



Imprinting with restrictions -- Example

D, U Dy, {z,y})

09,

yields and imprinting with restrictions

s>
Bp x B ——— > X‘SDOW(RN)



Imprinting with restrictions -- Example

Ay
yields and imprinting with restrictions

®
Bp x By — > X _(RY) H3(S,RN)

Y

H3(A,,RY) 3(4,,RY)



Imprinting with restrictions -- Example

D = (Dy U Dy, {z,y})

A, A,

yields the M-polyfold
X%),¢(RN) Py D, H3(S, RN)



Imprinting with restrictions -- Example

Dy, {z,y}) : :

and more importantly yields an 1mpr1nt1ng with restrictions

L o™ (@ x Id)
(® x Id) l(X"DOM(RN)pyxp/y H¥(S,RY)) —————————> X%(JYW(RN)%X% H3(S,RY)
where ¢ is the inclusion

X8 (RY) oy HI(S,RY) ——>= X3 (RN) x H¥(S,RY) P

H?(Ay, RY)



Imprinting with restrictions -- Theorem

The fiber product over annular restrictions of imprintings
with restrictions, is again an imprinting with restrictions



Feature: Projection to gluing parameter

= (Dy U Dy, {z,y})
Am\D @\Ay

IB%DXE‘SO—> X%’ —)IB%D

7N

H3(A,,RN) H3(A,,RY)




Definition: Submersive imprinting w. restrictions




Definition: Submersivei Inti restrictions

Basic LEGO block




Definition: Basic LEGO Block

m
imprinting surjective

P1 P2 Pn




Definition: Basic LEGO Block

imprinting

For each (zo, f o ®(z¢)) € Gr(fo®) C X x Z
there exists an open nbhd W C X x Z and sc-smooth map
p: W — W ofthe form p(z,z) = (p(z,2),2) such that
pop=p
p(W) =W NGr(fod)
pio®op(z,z) =pi(z)



Benefits of LEGO blocks:

Given LEGO blocks (&, p, f) and (&', p’, f)
the fiber product over f and f’ is another LEGO block.

If the p and P’ are restrictions to annular neighborhoods,
then the fiber product over elements of the P and p’
1s also another LEGO block.



From R® to manifolds

With X %0’ B (RY) defined, we now aim to define
X%O’ o (Q) where ( is a manifold.

Let
*®:Q = RY pean embedding

U c RY be an open neighborhood of (I)(Q)
. pr : U — U asmooth retraction onto CID(Q)

ie. propr=pr pr(U)= ®Q)



From R® to manifolds

Then U/ :={u € X{ (RY):Im(u) C U}
is open and the map

p:U—U

p(u) =prou
1S an sc-smooth retraction.

This defines an M-polyfold structure on

X (Qary = U {ueC(Z:,Q): ®oucpld)}

a€EBp

moreover X%J’SD(Q)q)’RN = X%),@(Q)qN,RN' as M-polyfolds,
so we simply write X%)’ sD(Q)



The periodic orbit case

Introduce
e periodic orbit: v = ([v], T, k)
 weighted periodic orbit ¥ = (v, 9)
with § = (6x)52,
 ordered nodal disk pair
D = (Dx L D,, (x,y))



The periodic orbit case

We define the function space Zp(R x RY %) to be the
set of tuples (a”, [Z,9],uY) where

w®: Dy \ {z} > R xRY

@’ : Dy \ {y} = Rx RN

(%, 7] is a natural angle

and for holomorphic polar coordinates a;f and o
associated to a representative (z,y) of [, g] there exists
v € [7] such that

a® oo (s,t) = (Ts+c® y(kt)) +7(s,1)
oo, (s t') = (Ts" + ¥, y(kt")) + (s, t)

here le:,fy c H3’50



The periodic orbit case

Theorem:
Zp(R x RN, %) is an ssc-Hilbert manifold.



The periodic orbit case

]B%DXE5°—> X% (RY) —>]B%D

Recall: / \
H3(A,,RY) 3(A,,RN)



The periodic orbit case

3,80
—— > ’ — >
YD,@

/N
LN

Y5 = ({0} x Zp(R xRN ,9)) |

((0,1)x || H*(Z.,RxRY))

0<l|a|< 3




The periodic orbit case

Q€>+7;a<\>
VAR

3 =1[0,1) x Zn(R x R¥, )
1.e. elements of the form
(r,a) with a = (a*, [z, 9], aY)




The periodic orbit case

3,00
%
Yy — > YD,go

/N
LN

V ={(r,u) € 3 :eitherr =0, orelse r >0 and (x) holds}

(%) o(r)+c?—c* >0
o (7 (plr) + e =) € (0, 1)



The periodic orbit case

D 3,90
D,y 3

O\




The periodic orbit case

3,90
%
V YD(,O

Fas

3(A,, Rx RY)  H3(A,,R xRY)

where

pa(r,®) = |, py(r,@) = ((—p(r) *@)|,

Y



The periodic orbit case

Plo,1)

1% —> Ygio [()71)

s

(A, RxRN)  H3(A,,R xRY)

Theorem:
(@a {pmapy}ap[o,n) isa

LEGO block.




The periodic orbit case

Plo,1)

y % 5 Ypr  ———>[0,1)

/%

(AL, RxRY)  H3(A,,R xRY)
Theorem.

There is a functorial construction which
extends to targets R x Q fromR x RY



Three important cases




Three important cases




Three important cases

D1 = Doy U Dy (130)) Dy = (Dyy U D, (w2,12))

B1 X B2 D[0,1) x P[0,1)
Vl XVQ _— > Y’gf?p X Ygﬁ?p e [Oa 1) X [07 1)

fa

Need the pull back of this diagram by A 0,1)



Building -- Road Map (stable map)

(domain curve)

/

(domain curve)

(set of nodal gl. param.) | (small disk str.)

(subset of target gl. param.) (anchor points)

gluing parameters:

target — domain
(domain of imprinting)

imprinting map naturally defined (target of imprinting)



Data Preparation:

interface maps

Given: / l \

stable map: o = OéQ,bl,CVl,bQ,.. bk,()ék
floors
floor: (FZ ,Sz,]Z,Mz,Dz,[ ] F+)

automorphism group preserving floor structure:

G



Data Preparation:

a; = (L7, S84, ji, My, Dy, [4), T';)
(S;, j;) Riemann surface
M; marked points
D; nodal pairs
I'; negative punctures
[’ positive punctures

[4;] eq. class of maps

(ai,ui) = ’ZLZ ~ C*ﬂi = (ai —|—C,UZ’)



Data Preparation:

F+ = {z4 25,26}
Do = {{z1, 11}, {z2,52}}
My = {,ul M2, 3, 4, /45}

2

FO = {Zl Z2, 73}



Data Preparation:

Isuing
i




Data Preparation:

b5

il

by : T =Ty
F(_)‘_ - {Z47Z57z6}
= {27,28, 29}

: far — fl_
- {24725726}

F]__ - {277 287 29}

b



Building -- Road Map \.@m map)

(domain curve with floor str.)

/

(domain curve)

(set of nodal gl. param.) | (small disk str.)

(subset of target gl. param.) (anchor points)

gluing parameters:

target — domain
(domain of imprinting)

imprinting map naturally defined (target of imprinting)



Data Preparation:

04:(040717170417(727

0 = (00751,01,52,

o b ay)

...,bk;,O'k;)
a; = (T;, S, ji, My, Dy, [w;], T;)

o; = (T;,8:,7:, Di, T)



Building -- Road Map \.@m map)

%ailn curve with floor str.)

(domain curve)

(set of nodal gl. param.) | (small disk str.)

(subset of target gl. param.) (anchor points)

gluing parameters:

target — domain
(domain of imprinting)

imprinting map naturally defined (target of imprinting)



Data Preparation:

«a :(@0719170517()27' .. ,bk,@k)

g = (0-07b170-1,b27'°'7bk:a0-k:)
a; = (L5, S:, i, My, Dy, [4;],T)

oi = Ty, S8i, 4i, Di, IY)
add small disk structures: add anchor points:
D about I'T ie{0,1,....k—1} Li=LnNS; #0
D, about |D;| i€ {0,1,...,k}

D; about I, i€{L2,...,k} all data G invariant

2



Building -- Road Map \@kz map)

%ailn curve with floor str.)

(domain curve)

(set of nodal gl. param.) |

(subset of target gl. param.)

(small disk str.)

(anchor points)

gluing parameters:

target — domain
(domain of imprinting)

imprinting map naturally defined (target of imprinting)



Fragmentation -- Focus on a floor




Fragmentation -- Focus on a floor




Fragmentation -- Focus on a floor




Fragmentation -- Focus on a floor

o 0@



Fragmentation -- Focus on a floor




Fragmentation -- Focus on a floor

S;={ue H*;) : avy,(a) =0}
A7 = H3(A;7 , R x RY)

A, = HE(A, R x BY) LEGO block
Al = H (A, R x RY) AF
]restr;r
S, | = Id) S, restr; _ A,
l restr,

A



Fragmentation -- Focus on a floor AF




Fragmentation -- Focus on a floor 4
AT restr;”

restri_l w‘ri
A; A

1



Fragmentation -- Focus on a floor

AF
= = = res‘cr;F
. s 2=l g
restr; l Wi
A; Ai
D1 X D2 PBp, X PBop,

(Bp, x E) % (Bp, X E%Z)—>X%)1,<px X‘SDOQ#)—) Bp X Bp,

restr;

0@ 0@



Fragmentation -- Construct a building
Recall: D = (DyUDy,{z,y})

Bp x E50—> X (R —D> Bop i

H3(A,,RY) H3(A,,RY)

EX =RN @ H3% (D, U D, RY)



Fragmentation -- Construct a building
Recall:

Plo1
y 9 5 Ypo 0D o

/ \ D= (D, UDy,(z,2")
. &

H3(A,,R x RY) AR x RY) \\



Fragmentation -- Construct a building
Recall:

Po1
y 9 5 Y35° o1 7 50,1

)
/ \ D= (D, UDy,(z,2")

A/
H3(A,,R x RY) AR x RN) \\@

Y C[0,1) x Zp(R x RY, )
elements of the form @ = (4%, [&, §], @*)
u oot (s,t) = (Ts+c?, y(kt)) +7*(s,t)
@ o oy (s ) = (Ts' + e, y(kt')) +7(s', 1)

~ ~u
here 7%,1% € H?3:%



Recall:

2= (S D+UDLHD)ﬂﬂAjU&UA{)
S;i={uce :avy,(a) =0}
avy, (@) = #1& S ai)

v zek;

I':= Uf;o(FT ury)

F: T — {’7 : weighted periodic orbit in RY }

which satisfies F(z) = F(b;(z)) for each
z€T and i€ {0,... k—1}

Define ssc-Hilbert manifold Z?2 ; (R x RV, F)




(trucated) floor k

Negative ends of bottom level

Interface level 1

Interface level 2

Interface level 3

Interface level k

Positive ends of top level



The takeaway:
73 1 (R x RN, F) is an ssc-manifold consisting
of tuples of the form

U = (’L~L0, bl, c e bk,ﬁk)

where each ; is of class (3, dp) and asymptotic
to the weighted periodic orbits prescribed by F
so that the data across interfaces is b; matching,
and the anchor averages vanish.



Domain of Imprinting (almost):

ssc-manifold
just constructed

Bp x [0,1)*x Z3 (R x RN, F)

tuple of target gluing parameters]
one for each interface level

product of domain gluing parameters Bp,, .
for each {z,y} € D




Domain of Imprinting (actual):

BDXO

where O C [0,1)"x Z3 ; (R x RV, F) consists
of tuples (r1, ..., 7, u) with r; € (0,1) and

~

u = (o, 131, e Bk,ﬁk) such that either

. <s0(n') c* () + ") (@) > 0
N (- () — F (@) + B (@) € (0, 1)



Building -- Road Map \@k map)

%ailn curve with floor str.)

(domain curve)

(set of nodal gl. param.) |

(subset of target gl. param.)

(small disk str.)

(anchor points)

gluing parameters:
target — domain

\@min of imprinting)

imprinting map naturally defined (target of imprinting)



JZ(S?jaM7D) Let

BD = H IBD{%y}

{z,y}€D

observe:

oc+aeBp
yields

Oq = (injm Maa &)



Oq — (Saajaa M, Da)

a e Bp



o = (00,b1,01,b2,09) Let

Bp = H Boe

{z,y}€D

Floor 2 observe:

oct+aeBp
yields

Floor 1 0a = (Sa;Jar Ma, Da)

Floor 0



OGBD




Floor 2

Floor 1

Floor 0

0 = (0-07 b170-17 b2702)

aEBad



Floor 0

Oag = (087 b?v U%)

aEBad



Floor 1

Floor 0

05 = (04,05, 01)

aEBad




Floor 0

ﬁeIB%ad



0 = (0-07 b17017 b2702)

anchor points

° a € Baq
F

loor 2

Floor 1

Floor 0



Floor 0

05 = (04,05, 01)

aEBad



Floor 1

Floor 0

05 = (04,05, 01)

aEBad



Floor 0




Recall:
o = (a07817a17827"'78k7ak)
o; = (U7, 85, 5i, Mi, Dy, [w;],T'7)
0; — (P;7517j27Mz7D17P:_)

Then up to rearrangement:
a = ((04)iz0, (bi)izy, ([:])io)






Nk b \E 7
((01>z:07 (bl)izla (ui)éﬂ:O’ (‘Li)f:O’ ELIBgad)

(080 (o) (K (1) (X
( a, ) _0’( a,e)e:()a (la,e)ﬁzm (ui>§:07 (‘I‘&l,ri)?zo’ a)




((i)i=0s (bi)i=1, (@i)i—g, (Li)iig, 8 € Baa)

((Uﬁ,e)ﬁzo, (i)&,e)gzm (‘Lﬁ,e)gzov (ai>§:07 (‘I‘\g,ri)?zo’ a)




((73,e)—0s (b ooy (La,e)imos (@) g, (X73)E 0, G)

for i <1 < ieyq

~ ﬂz lf Z == 'L’e
u;, = B )
((ri,41) + -+ ¢(r;)) x; otherwise

_ (o ~ %
We = g, (4], .., U5, 1)

(<Oa,6)£:07 (Bﬁ,e)gzm (we)gzm (la,€)£207 (l\él;)i?:o; El)

L_/\EE.:%M(R % RN, F)



Workhorse Imprinting Theorem:

This defines an imprinting
T:Bpx0O— 27> 1o(RXRYF)

Moreover this functorially extends to an imprinting for

Zo‘ l,cp(R X Q? )



Building -- Road Map \@k map)

%ailn curve with floor str.)

(domain curve)

(set of nodal gl. param.) |

(subset of target gl. param.)

(small disk str.)

(anchor points)

gluing parameters:

target — domain
domam of imprinting)

v

imprinting map naturally defined (target of imprinting)



Transversal Constraints:

Consider a map in Zg,l’w(R x Q,F) fixa G
invariant finite set = = Zy U ... U Z; disjoint
from usual interesting sets. For z € Z; let [z]
denote its G orbit. There are two types of constraints:
+ R invariant:
Fix co-dimension 2 submanifold Hp, C Q

ﬁ[z] =R X H[Z]
« non R invariant:;

Fix co-dimension 1 submanifold H,;C Q

Hy o= {ag} x Hy



Transversal Constraints:

This yields an assignment: H : z — H 2]

Then define the subset Z ; 5, (R x Q,F) o

z? 2.0(Rx Q,F) as those @ for which

- (—avy, (W) xw(z) € PNI[Z]

- The above shifted map transversally intersects H 2]



Toy Groupoidal Categories




Toy Groupoidal Categories

Q Without adding objects,
X O 1) add the fewest morphisms to make

°
this a groupoidal category

2) and without increasing the isotropy
at X, add the most morphisms while
Y e keeping it a groupoidal category



Toy Groupoidal Categories

o

Answer

Y e

©



Toy Groupoidal Categories

(D

[ ] [ ] .
A Same questions:




Toy Groupoidal Categories

¥

v( Same questions:




Definition -- Groupoidal Category

A groupoidal category is a category C is a
category with the following properties.

1. Every morphism is an isomorphism
(i.e. has an inverse).

2. Between any two objects there are
only finitely many morphisms.

3. The orbit space |C|, (collection of
isomorphism classes) is a set



Definition -- Translation Groupoid

Let O be an M-polyfold, and G a finite group
acting on O by sc-diffeomorphisms. Then the
associated translation groupoid G x O is the
category with

1. Objects O
2. Morphisms G' x O understood as

(g,0)
g—""5g%o0



Definition -- GCT

A GCT is a pair (C,T) where C is a groupoidal
category and 7T is a metrizable topology on

the orbit space |C|.



Definition -- Uniformizer

Given groupoidal category C, a uniformizer
at ¢ € Ob(C) with automorphism group G,

is a functor ¥ : G x O — C with the
following properties.

1. O is an M-polyfold

2. G acts on O via sc-diffeomorphism
3. G x O is assoc. translation groupoid
4. there exists 0 € O s.t. ¥(0) =c
5
6

. U is injective on objects
. ¥ is full and faithful



Definition -- Uniformizer Construction

A uniformizer construction is a functor
F : C — SET which associates to an object

c a set of uniformizers. If for each object c,
the set F'(c) contains only tame uniformizers,

then we shall call F' a tame uniformizer

construction.



Definition -- Transition Set

Fix a groupoidal category C and a local
uniformizer construction F': C — SET,
a,a’ € Ob(C), and local uniformizers
U € F(a) and V' € F(a'), so that

axo e o xo

Define the transition set M(W¥, ¥’) by

M(V,0') = {(0,®,0'):0€ 0, o € 0,
® € Hom (¥ (o), ¥' (o)) }



Definition -- Transition Set

M(V,0") = {(0,®,0'):0€ 0, o € 0,

® € Hom (¥ (o), ¥' (o)) }

Recall that the transition set M(W, U’) is
equipped with the following structure maps.

1.

A

source map
target map

unit map (identity)
inversion map

multiplication map (composition)



O

Transition Germ Construction




O

Transition Germ Construction




Transition Germ Construction




O

Transition Germ Construction




PG ooooooooooooooooeoes /O
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Transition Germ Construction !
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PG ooooooooooooooooeoes /O
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Transition Germ Construction

Let F' be a uniformizer construction. A
transition germ construction G associates

for given W € F(c) and ¥ € F(¢') to

h = (0,®,0) € M(¥,¥’) agerm of map
&y (0,0) — (M(V, 0", h) with the
following properties, where g;, =t o &y,.



Transition Germ Construction

Diffeomorphism Property:

The germ g5 : O(0,0) — O(0',0') is a local
sc-diffeomorphism and s(®(q)) = q for ¢
near o. If ¥ = ¥ and h = (0,¥(g,0),9 * 0)
then & (q) = (¢,¥Y(g,q), g * q) for g near o so
that fn(q) = g *q.



Transition Germ Construction

Stability Property:
Be,(q)(P) = Gy (p) for g near o = s(h) and
p near q.



Transition Germ Construction

Identity Property:
Bu(0)(q) = u(q) for ¢ near o.



Transition Germ Construction

Inversion Property:

&, n)(9r(q)) = t(B1(q)) for g near o = s(h).
Here «(p, ®,0")) = (o/,®71,0).



Transition Germ Construction

Multiplication Property:

If s(h') = t(h) then gnr o gn(q) = gm(h’ ny(q) for
q near o = s(h), and m(& (gn(q)),Br(q)) =
&n(n,nr)(q) for ¢ near o = s(h).



Transition Germ Construction

M-Hausdorff Property:

For different hy,he € M(¥,¥’) with

o = s(h1) = s(hg) the images under &y,
and &y, of small neighborhoods are disjoint.



Upshot:

Key upshot of transition germ construction:
1. Natural topology T on |C|
2. |¥|:|0O| — |C| are homeomoprhisms
with image
3. induces M-polyfold structures on
the M(W, U’).
Moreover:
4. If T is metrizable, then (C,T) is a GCT.

(this is the case for the category of stable maps)



"Transition Category"
Objects:

(\IJ’,O/) UV :.G'x 0 —=C,
o' e O

Morphisms:

(0, ®,0") such that ¢ e Mgr(C)

U(0) — W(o)
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thicken:




(¥, 0)

"thicken"

(0, ®,0")

> (W', 0")




Building charts/uniformizers:

Given Base-point

(Q7 )\7 LU) (0

J

6y : P* — (0,27]

2

3 Determined
S3-90 (Q,\,w)
o o

G G7

Choose

m £ <« O



Review: Collecting Pieces

Given (background structures)

1. (Q,\w)
(a) @ closed odd dimensional manifold

(b) (A\,w) non-degenerate stable Hamiltonian
structure

2. compatible/admissible almost complex
structure J

3. determine spectral gap map, 0y : P* — (0, 27]
4. choose associated weight sequences 7y — 7

5. define category of stable maps S (Q, \,w)



Review: Collecting Pieces

Choices (for charts)

1.
2.
3.

a = (ag, bi,... by, ay) with isotropy group G
determines underlying o = (09, b1, ..., bk, ok)

choose stabilization set = with associated
transversal constraints Hy,] (two types)

choose small disk structure D and anchor
points T

. verify that ...(see next slide)



Review: Collecting Pieces

5. verify that
e the sets M,I', L, =, D are all pairwise

disjoint
¢ D is disjoint from M, L, =
e the sets M,I', X,=, D and D are G-invariant

® the Riemann surface & = (S, j, M, D) is
stable where

M=MUl'yuUTfUE
D=DU{{zbi(2)}:z€T ", ie{1,....k}}



